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Abstract 

The validity of form-factor, modified-form-factor and 
anomalous-scattering-factor approximations in predic- 
tions of elastic photon-atom scattering is assessed with 
the aid of the state-of-the-art numerical calculation of 
Rayleigh scattering obtained using the second-order S- 
matrix theory, in the photon energy range from 100 eV to 
1 MeV. A comparison is made with predictions from S- 
matrix theory in the same atomic model for representa- 
tive low-Z (carbon, Z = 6) and high-Z (lead, Z = 82) 
elements to get a general idea of the validity of these 
simpler more approximate methods. The importance of 
bound-bound contributions and the angle dependence of 
the anomalous scattering factors is discussed. A 
prescription is suggested, with the assumption of angle 
independence, that uses simpler approaches to obtain the 
elastic scattering cross sections in the soft-X-ray regime 
at the level of accuracy of the S-matrix calculation, 
failing at large momentum transfers for high-Z elements. 
Predictions from this prescription are compared with 
experiment. With starting point the many-body elastic 
scattering amplitude, a detailed discussion is presented of 
the partition of the elastic scattering amplitude into 
Rayleigh and Delbrtick scattering components. This 
partition of the optical theorem reveals contributions 
from bound-bound atomic transitions, bound pair 
annihilation and bound pair production that are not 
usually associated with elastic scattering. In the parti- 
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tioned optical theorem for Rayleigh scattering, as in the 
many-body optical theorem for scattering from excited 
states, subtracted cross sections naturally appear. These 
terms are needed, in addition to the familiar terms for 
photoionization, to relate the real and imaginary parts of 
the scattering amplitude. 

I. Introduction 

Elastic scattering of photons by atoms, molecules and 
solids is an important method of obtaining information 
about structural properties of materials. To understand 
the elastic scattering from a composite system, elastic 
scattering from the basic unit (an isolated atom or ion) 
must be accurately known. By identification of the 
deviation of elastic scattering by a complex system from 
elastic scattering by free atoms, valuable information 
about how the complex system is organized can be 
retrieved. In particular, accurate knowledge of the 
scattering near the photoeffect absorption edges enables 
one to determine the structures of macromolecules (see, 
for example, Karle, 1989). 

The second-order S-matrix approach (SM; see, for 
example, Kissel, Pratt & Roy, 1980) provides a better 
calculation of elastic scattering than is normally available 
from simpler approaches, namely the form-factor and 
anomalous-scattering-factor approximations. In this re- 
port, we use SM predictions to investigate the validity of 
simpler approximations to scattering and conclude that, 
in the independent particle approximation (IPA), the use 
of angle-independent anomalous scattering factors with a 
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modified relativistic form factor (MF+ASF) provides a 
fairly good approximation to SM in many cases. (Almost 
all current predictions of elastic scattering are done 
within IPA.) We use this insight into the validity of the 
MF+ASF approach to illustrate predictions that go 
beyond IPA, although the database does not now exist 
to support more systematic tabulations. 

An isolated atom itself is a composite system of a 
nucleus and bound electrons. It is a good approximation 
to consider the elastic photon scattering by an atom as the 
coherent sum of contributions of elastic photon scattering 
from the nucleus (nuclear Thomson and nuclear 
resonance scattering) and of the bound electrons 
(Rayleigh scattering) and vacuum fluctuations (Delbrtick 
scattering) in the field of the nucleus. At lower photon 
energies, the elastic scattering from bound atomic 
electrons gives the dominant contribution to the elastic 
photon-atom scattering amplitude. Nuclear Thomson 
scattering becomes important with increasing atomic 
number Z and becomes relatively important compared to 
Rayleigh scattering at large scattering angles and high 
photon energy. Nuclear resonance and fluctuation effects 
become significant only at higher photon energies. 
(Delbrtick effects start to show up even for photon 
energies as low as about 600keV.) An accurate 
calculation of Rayleigh scattering is generally quite 
complicated. In this work, we review some approximate 
but simpler approaches in calculating atomic Rayleigh 
scattering and assess their usefulness in application by 
comparing their predictions with results from more 
accurate calculations in the same potential model. 

Up to now, most calculations of Rayleigh scattering 
have been simply performed within the framework of the 
independent-particle approximation (IPA), in which all 
atomic electrons are assumed to move independently in a 
common central potential due to the nuclear charge and 
to the average distribution of all electrons. IPA is a good 
approximation for photon energies that are not too low. 
But when photon energy is very low (as in the optical 
range) or very close to photoeffect thresholds (the 
regions of extreme anomalous scattering), many-electron 
correlation effects, which are neglected in IPA, become 
important and IPA becomes inadequate. Even though 
there have been some works that studied correlation 
effects (Lin, Cheng & Johnson, 1975; Ice, Chen & 
Crasemann, 1978; Roy, 1991; Zhou, Kissel & Pratt, 
1992b), how to go beyond IPA to include the many- 
electron correlation effects in Rayleigh-scattering calcu- 
lation is still an open question. 

At present, the best available calculation of Rayleigh 
scattering from first principles within IPA is based on the 
code developed by Kissel (1977), which uses the second- 
order S-matrix method. Agreement with its predictions is 
observed in comparison with experimental results over a 
wide range of photon energies (Kane, Kissel, Pratt & 
Roy, 1986), not too near photoeffect thresholds (which 
are displaced from their experimental locations). The 

method requires a considerable amount of computation 
time, especially for heavy atoms and for high photon 
energies, which makes extensive systematic computation 
too expensive to perform. In addition, inclusion of effects 
beyond the IPA will be difficult within the currently 
implemented S-matrix codes. 

A simpler but useful approach, which has been widely 
used in estimating the Rayleigh-scattering cross section, 
is the form-factor approximation (FF) or its improved 
version, the modified relativistic form factor (MF). [In 
subsequent discussions, we often distinguish between the 
nonrelativistic (NF) and relativistic (RF) versions of the 
form factor. Here, we generally concentrate on RF, so 
that all comparisons can be carded out completely within 
a single atomic model.] As less computer time is 
involved in form-factor calculations, extensive tabula- 
tions of NF, RF and MF are readily available for the 
elements Z = 1-100 (NF: Hubbell, Veigele, Briggs, 
Brown, Cromer & Howerton, 1975; RF: Hubbell & 
Overbo, 1979; MF: Schaupp, Schumacher, Smend & 
Rullhusen, 1983). NF, RF and MF are small-momentum- 
transfer high-energy approximations and one expects 
substantial deviations for photon energies near and below 
the photoeffect thresholds, as well as for heavy elements 
and large momentum transfers. By the introduction of 
electron binding effects into the form factor, the MF 
produces better high-energy results for heavy elements 
and, more importantly, gives the correct relativistic high- 
energy limit for forward scattering (Kissel & Pratt, 
1990). 

To remedy the failure of RF or MF at low photon 
energies, anomalous scattering factors are often intro- 
duced, which correct RF or MF for forward-angle 
scattering. Dispersion relations (relating the real and 
imaginary parts of the forward-scattering amplitude) and 
the optical theorem (relating the imaginary forward-angle 
scattering amplitude to the photoabsorption cross sec- 
tion) have been used to obtain the anomalous scattering 
factors from photoabsorption data (Cromer & Liberman, 
1970a,b, 1976, 1981; Cromer, 1974, 1983; Henke, Lee, 
Tanaka, Shimabukuro & Fujikawa, 1981, 1982; Henke, 
Gullikson & Davis, 1993). Usually only bound-free 
photoabsorption (photoionization) cross sections are 
used. 

Once having these anomalous scattering factors for 
forward scattering, and taking them as a deviation 
(assumed angle-independent) from form-factor approxi- 
mation at all angles, one can combine the anomalous 
scattering factors with RF or MF to calculate Rayleigh- 
scattering cross sections at finite angles (ASF approxi- 
mation). As we show later, this approach does not 
generally give the same accuracy as the S-matrix 
calculation, and the angle-independent approximation 
will not be adequate at large momentum transfers, but it 
improves RF or MF substantially to give very good 
results at low photon energies. It is to be noted that the 
inclusion of anomalous terms with the RF or MF requires 
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very little additional computation time (once the 
anomalous scattering factors have been suitably tabu- 
lated). 

As we begin to write out explicit expressions for 
scattering amplitudes, the reader should be alerted to the 
different sign conventions that are in common use in the 
literature. One convention involves the overall sign 
choice of the scattering amplitude. As the Thomson 
scattering amplitude is negative, some authors have 
explicitly factored out an overall minus sign (see, for 
example, James, 1962), while others have not (see, for 
example, Sakurai, 1967). A second important choice lies 
in the form of the photon wavefunction. The choice 
typically made in the physics literature, exp(iK, r - i t o t ) ,  
differs from that made in the crystallographic literature, 
exp[-( iK,  r - ioot )] ,  with a consequent difference in the 
relative signs of the real and imaginary parts of the 
scattering amplitude. We do not factor out the overall 
minus sign in our scattering amplitude A, and we use the 
plane-wave convention of the physics literature. We note 
the differences from the crystallographic literature in our 
final results for the anomalous scattering factors. 

In this work, we compare the simpler approaches 
(namely the RF, MF and ASF approximations) with the 
more sophisticated second-order S-matrix calculation, for 
representative low-Z (carbon, Z = 6) and high-Z (lead, 
Z = 82) elements, so as to obtain a general idea of the 
validity of form factors with and without anomalous 
corrections. To ensure a consistent comparison, all 
calculations have been performed in the same atomic 
potential, the relativistic Hartree-Fock-Slater potential 
with the Latter tail (see, for example, Liberman, Cromer 
& Waber, 1971). The present work is organized as 
follows: in §2 we describe the best available first- 
principle calculation of atomic Rayleigh scattering, the 
second-order S-matrix method. In §3, the accuracy of RF 
approximation is discussed; ~4 is devoted to the similar 
discussion for MF. The use of ASF is described in §5. 
Here we discuss some related issues, such as the high- 
energy limit, the angle-independent assumption and the 
contribution from bound-bound transitions. We make 
systematic comparisons of cross sections, obtained with 
the modified form factor combined with angle-indepen- 
dent anomalous scattering factors (MF+ASF), with the 
S-matrix calculations. Possible ways of calculating 
Rayleigh scattering beyond the IPA level are discussed 
in §6. In §7, we conclude by giving a practical 
prescription, based on these discussions, which uses 
simpler approaches, to obtain accurate Rayleigh-scatter- 
ing cross sections at the level of accuracy of the S-matrix 
calculation for most cases of interest in the soft-X-ray 
regime. 

2. The second-order S-matrix method 

In the discussion that follows, elastic photon scattering 
from isolated atoms or ions is understood as scattering 

from many-particle systems of electrons and nucleons 
that are held together by electromagnetic and nuclear 
forces. In addition to these particles, in the language of 
hole theory, the atomic system includes a filled negative- 
energy sea for each kind of particle. We do not consider 
the forces (including those from radiation fields) that 
correlate motions of these particles. [The reader is 
referred to Pratt, Kissel & Bergstrom (1994) for 
discussion of inelastic photon-atom scattering - bound- 
electron Compton scattering.] 

The interaction of radiation with this atomic system of 
particles and seas is described by introducing in the 
many-particle Hamiltonian the minimal electromagnetic 
coupling that, for each particle of charge q, replaces its 
momentum operator p by p - q A / c ,  with A the electro- 
magnetic field at the coordinate of that particle. Then, the 
scattering of photons from this system of fermions (each 
satisfying a Dirac equation), to the lowest nonvanishing 
order in perturbation theory, is described by the second- 
order S-matrix amplitude (Fig. 1) as 

A = - ~ _ , [ ( N I O ~ I P ) ( P I O i I N ) / ( E  N - Ep --t- hto-t-  i0+)] 
P 

+ [(NIO, I P ) ( P I O ~ I N ) / ( E N  -- Ep - h ~  - i0+)], (1) 

where the elastic scattering cross section is computed as 

d t r / d I 2  = IAI 2 (2) 

and ho9 is the energy of the incident (or scattered) photon, 
the operator 0 i (O~) describes the absorption (emission) 
of the incident (scattered) photon, i = ( -1)  ~/2, O+ is a 
small positive value and the states IN) and IP) are 
properly symmetrized solutions of the many-particle 
Dirac equation for noninteracting particles. 

It is traditional to partition the amplitudes for 
scattering off an atomic system into amplitudes for 
scattering off its components - electrons, nucleons, the 

(a) 

-x.-x_x_ r / "  

/t 
T i m e , t  • 

(b) 
Fig. 1. Furry diagrams for second-order scattering. (a) Absorption first. 

(b) Emission first. 
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negative-energy seas - and, in the case of coherent elastic 
scattering (no energy transfer to, or change in, the 
internal degrees of freedom of the atomic system), call 
these the component amplitudes for Rayleigh (R), 
nuclear Thomson (T) and Delbrtick (D) scattering (to 
be added coherently, since they cannot be distinguished 
in any observation): 

A = A  R + A  T + A  ° .  (3) 

Pratt  et  al. (1994) present a more detailed discussion of 
this partitioning and the steps needed to reduce the many- 
particle scattering problem to a single-particle description 
of scattering. As far as we are aware, this is the first such 
discussion at a many-particle level; it also provides an 
explanation of why in a single-particle formalism one 
sums over a complete set of intermediate states, even 
though some of them are occupied and inaccessible. An 
important result of that discussion is the realization that 
there will be a subtracted cross section associated with 
downward transitions into real unoccupied bound states 
(only for scattering from excited states) and also into the 
negative-energy continuum states; the latter can be 
identified with the cross section for positron annihilation 
with the electron of the given bound state. 

To the lowest order in the fine structure constant, the 
optical theorem for Rayleigh scattering states that 

ImAg(to, 0) -- (to/47rc)(tr PE -k- tr BBT+ -- tr BBT- - -  o 'BPA),  

(4) 

where O "PE is the cross section for the photoeffect, tr BBT+ 
is the cross section for a transition from the initial state to 
an excited bound state of the system, cr BB'r- is the cross 
section for a transition from the initial state to a bound 
state of lower energy and tr BPA is the cross section for 
bound-electron pair annihilation, wherein an initial hole 
in the negative-energy sea is filled by one of the initial 
bound electrons. A similar discussion applies to the 
Delbriack amplitude, in which, in addition to transitions 
from negative-energy electrons to the continuum (the 
ordinary pair-production cross section), we have to add 
cross sections for transitions to the filled and unfilled 
bound states (bound pair production, where the electron 
is created in a bound state). 

In all the S-matrix work to date (except some 
nonrelativistic analytic point-Coulomb calculations), 
one has summed or averaged scattering over all magnetic 
states of a subshell, thereby not considering the magnetic 
scattering effects that are possible with a polarized or 
oriented target. 

General considerations of rotational invariance and 
parity conservation allow the Rayleigh scattering ampli- 
tude to be written in the form 

A R  - -  (~'i. g ~ ) . A / [ ( K i .  K;) + (~.  KI)(e7. K i ) J V ' ( K i .  K / ) ,  

(5) 

where .At and A/" are complex functions of the scattering 
angle (they only depend on the inner product K i • K f ) ,  
and the atom has been assumed to be rotationally 
invariant (i.e. composed of filled subshells). Note only 
the first term contributes for forward scattering or in 
dipole or form-factor approximations discussed subse- 
quently; through the X-ray regime it varies relatively 
slowly with energy. If we decompose the polarization 
vector into components parallel and perpendicular to the 
scattering plane (defined by v e c t o r s  K i and Kf, as shown 
in Fig. 2), 

.11~11 " _11~11 .J_ ,-_L 
e. i = e i~  i + e~-~{-, ~[ = ef~.f + e i ~/, (6) 

it is easy to show that 

where 

A R ~11~11 aR _L .J_--R 
- -  e, i e / ta l l  + E i Eft A_L, (7) 

A~I = M cos O - A/'sin20, A~ = M .  (8) 

(In this notation, ei is the polarization of the incident 
photon, g;l I is a unit vector that is parallel to the plane of 
scattering and perpendicular to Ki, while ~ is a unit 
vector that is perpendicular to the plane of scattering and 
perpendicular to  K i . )  The scattering angle 0 is the angle 
between K i and Kf (0 = 20 ,  where 69 is the Bragg 
angle). The cross section for scattering of initially 
unpolarized photons where the polarization of the 
scattered photon is not observed is obtained by averaging 
over incident-photon polarizations and summing over 
scattered-photon polarizations: 

d o ~ d r 2  = ½([A~[ 2 q-[A_ff_[2). (9) 

Plane of scattering 

/ 
/ t  f 

f f J  

, t  j 

z ~  
I 
I 

 __07 Kf 

/ / 

-A 

Ki 

e I.I 
I 

- -~X 

Fig. 2. Geometry of Rayleigh scattering. The XZ plane is chosen to be 
the plane of scattering. 



L. KISSEL, B. ZHOU, S. C. ROY, S. K. SEN GUPTA AND R. H. PRATr 275 

The general case of polarized scattering is discussed by 
Roy, Sarkar, Pratt & Kissel (1986) in terms of Stokes 
parameters. 

S-matrix Rayleigh-scattering calculations have been 
performed by Brown and co-workers (Brown, Peierls 
& Woodward, 1955; Brenner, Brown & Woodward, 
1955; Brown & Mayers, 1956, 1957), Johnson and co- 
workers (Johnson & Feiock, 1968; Lin et al., 1975; 
Johnson & Cheng, 1976), and Kissel & Pratt and co- 
workers (Kissel et al., 1980; Kissel & Pratt, 1985; Kane 
et al., 1986; Roy, Kissel & Pratt, 1983; Roy, Sarkar, 
Kissel & Pratt, 1987; Parker & Pratt, 1984; Smend, 
Schaupp, Czerwinski, Schumacher, Millhouse & Kissel, 
1987; Zhou, Pratt, Roy & Kissel, 1990; Pratt et al., 
1994). Here, we do not discuss the detailed formalism of 
the numerical method, which can be found in Johnson & 
Feiock (1968) and Kissel (1977). Instead, we briefly 
describe the status of the SM method, since we use it as a 
reference to judge other approximate methods. 

Results from the S-matrix calculation for Rayleigh 
scattering have been obtained and compared with 
experiments over a wide range of photon energies and 
elements (Kissel et al., 1980; Kane et al., 1986). Since 
threshold positions in the IPA SM calculation are 
somewhat different from actual experiment, simple 
scalings are sometimes applied in the comparison when 
the photon energy is near a threshold. As long as the 
photon energy is not too close to any thresholds, the SM 
predictions generally agree with experiments to within 
several percent. Because all significant multipoles and 
partial waves are included in the radiation interaction 
with the scattering electron in the atomic potential, the 
S-matrix method gives excellent results not only for low 
momentum transfers but also for large momentum 
transfers. In other words, the S-matrix method accurately 
predicts the angular distribution of Rayleigh scattering, 
even for very high photon energies. One major achieve- 
ment of this method is that the accuracy at y-ray energies 
is sufficiently high to enable an experimental identifica- 
tion of Delbriick scattering (Basavaraju, Kane & Varier, 
1979; Miickenheim & Schumacher, 1980). 

Published differential cross sections for elastic scatter- 
ing using the S-matrix method are available as tables for 
seven photon energies in the range from 59.5 keV to 
1.33MeV for ten elements in the range Z - -13 -103  
(Kane et al., 1986; see also Roy et al., 1983); differential 
amplitudes are available for 2.754MeV photons scat- 
tered by eight elements in the range Z = 30-92 for 
0 = 60-120 ° (Rullhusen, Mtickenheim, Smend, Schu- 
macher, Berg, Mork & Kissel, 1981); near-K-shell 
differential cross sections are available for Z - - 3 6  and 
54 for 21.2-43.7 keV (Smend et al., 1987); polarization 
values for selected Z in the range 13-92 for photon 
energies from a few keV to above 1 MeV are available 
(Roy et al., 1986); and fragmentary data are available 
throughout the X-ray regime (Kissel et al., 1980; Zhou et 
al., 1990). Unpublished SM values have been system- 

atically computed for photon energies less than 300 times 
K-shell binding on a 52-point grid of energies of 
experimental interest in the range 0.0543-2754.1 keV 
for 38 neutral atoms in the range Z = 1-103; other 
scattered SM values are also available. (Contact LK for 
more information regarding these data.) 

The evaluation of the S-matrix element is computer- 
intensive for heavy atoms and high photon energies, 
because more shells are involved in heavy atoms and 
more higher-multipole and partial-wave contributions are 
needed for high photon energies. However, the majority 
of the computational time is consumed in outer-shell 
calculations, while for large photon energies the 
contributions to the total Rayleigh scattering amplitude 
are mainly from inner shells. This allows us in many 
cases to use a faster, but still accurate, alternative 
approach: we can calculate inner shells using the S- 
matrix method, while estimating outer-shell amplitudes 
with a modified relativistic form factor (MF, which we 
discuss later), for photon energies large compared to the 
given outer-electron's binding energy. By doing so, we 
appreciably reduce computation time. For photon 
energies that are not large compared to a given outer- 
electron's binding energy, or for energies near to a 
bound-bound resonant transition (not included in MF) 
involving this given outer electron, this procedure will 
not be accurate. 

It is important to mention that, while the Rayleigh 
scattering amplitude dominates at most angles for X-ray 
energies, other amplitudes in elastic photon scattering 
start to be important at higher energies. For light 
elements, the nuclear Thomson amplitude becomes 
important by 100keV and dominates the large-angle 
scattering amplitude by 1 MeV. For heavy elements, the 
nuclear Thomson scattering becomes significant at back 
angles for energies about 500 keV, becomes comparable 
to the Rayleigh amplitude by 1 MeV and dominates at 
most angles at higher energies. The Delbriick amplitude 
begins to contribute at intermediate angles (about 60 ° ) 
for energies somewhat below 1 MeV, and eventually 
dominates at most angles by 100MeV (Kane et al., 
1986). In most situations considered here, the nuclear 
Thomson scattering amplitudes can be estimated from 
the following simple expressions: 

AI~ rr = A~ NT cos0, A~ NT = - r o ( m / M ) Z  2, (10) 

where Z and M are the charge and mass of the nucleus, 
respectively. The unpolarized cross section including 
contributions from the Rayleigh and nuclear Thomson 
amplitudes is written as 

d~/d~2 = ½ ( A~ + A~ T2 + IA + A~TI2). (11) 

The nuclear Thomson amplitude makes relatively 
significant contributions to heavy atoms and it is 
included together with the Rayleigh scattering amplitude 
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in our subsequent comparisons for X-ray scattering to 
give the total elastic scattering amplitude; we have not 
included the Delbrtick amplitude in this energy regime. 

3. Form-factor approximation 

In the limit of high photon energy and small momentum 
transfer, it can be shown that the Rayleigh scattering 
amplitude can be expressed as (Goldberger & Low, 
1968; Zhou, 1991) 

A R ~ - r o m c E ( F , i  • ~.;)~_, [ ( r / e x p ( - i K .  r) 
n 

x rE,, - V - c(K. p)]- '  in)], (12) 

where K - -  K f  - K i ---- fiq is the momentum transfer and p 
is the electron momentum operator. This neglects .M" in 
(8). 

Under the assumption that electrons in the atom are 
loosely bound to the nucleus, such that (nlVln), 
c(nJ]p[ln) and JE,-mc2[ are all very much smaller 
than mc 2, the denominators in (12) may be replaced by 
the rest-mass energy of an electron, m&. Then, we get 
the Rayleigh scattering amplitude in the form-factor 
approximation [Franz (1935, 1936); Bethe, see Levinger 
(1952); Goldberger & Low (1968); Florescu & Gavrila 
(1976); for nonrelativistic derivations see, for example, 
Sommerfeld (1939); James (1962)]: 

A FF = -r0(~; • q ) f ( q )  (13) 

or, in terms of linear photon polarization, 

A[iF----rof(q)cosO, A[F----rof(q).  (14) 

For Rayleigh scattering of an unpolarized photon, the 
differential cross section in form-factor (FF) approxima- 
tion is 

dcrFF/dY2 = (r~/2)lf(q)]2(1 + cos20), (15) 

where 0 is the scattering angle (0 = 2~,  where ~ is the 
Bragg angle) and f(q) is the Fourier transform of the 
electron charge density (see, for example, Hubbell et al., 
1975) for a momentum transfer hq. 

In the special case of forward scattering (0 = 0, 
h q - 0 ) ,  f ( 0 ) - - N ,  where N is the total number of 
electrons in the atom. For a certain range of small q,f,(q) 
for a given subshell n will stay almost constant (equal to 
the number of electrons in the subshell) and then start to 
drop once q is large enough that 1/q is smaller than the 
size of the subshell. Thus, form factors of outer shells 
decrease earlier, at smaller momentum transfers, while 
form factors of inner shells drop at larger momentum 
transfers and the K-shell form factor drops last, for the 
form factor as considered a function of increasing q. 

As already noted, extensive tabulations are available 
for atomic form factors, using both nonrelativistic 
wavefunctions (NF) and relativistic wavefunctions 

(RF). But one should not be misled by an impression 
that the relativistic form factor is necessarily better than 
the nonrelativistic one; there is theoretical and experi- 
mental evidence suggesting that the form factors 
obtained from relativistic wavefunctions can produce 
poorer predictions than those from nonrelativistic 
wavefunctions, particularly for heavy atoms (Roy et al., 
1983; Kane, Mahajani, Basavaraju & Priyadarshini, 
1983). The reason might be that there is substantial 
cancellation among relativistic, retardation and higher- 
multipole effects, so that inclusion of relativistic effects 
but omission of other effects can make predictions worse. 
In general, both relativistic and nonrelativistic form 
factors differ from each other by no more than a few 
percent when the momentum transfer is not very large. 

To examine the validity of RF approximation, we 
choose two representative neutral atoms: C (Z -- 6) and 
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Pb (;2 = 82). The form factors for these atoms were 
calculated using wavefunctions obtained in the relativis- 
tic Hartree-Fock-Slater potential with the Latter tail. We 
have compared the total (angle-integrated) cross section 
and the differential cross sections obtained in RF 
approximation, (11) [with the Rayleigh amplitude 
computed via (14)], with the SM results calculated in 
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Fig. 5. Differential cross sections of Rayleigh scattering in various 
approximations near the K-shell photoeffect threshold of carbon 
(about 0.28 keV) for 0 = 90 °. The crosses indicate SM values. The 
differences between RF and MF are indistinguishable on the scale of 
this plot. 
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Fig. 6. Differential cross sections of Rayleigh scattering in various 
approximations at higher energies (larger momentum transfers) for 
lead for 0 = 90 °. The crosses indiate SM values. The differences 
between MF+ASF and M F + A S F - B B  are indistinguishable on the 
scale of this plot. 

the same potential, for these atoms at various scattering 
angles. Relative difference curves of the angle-integrated 
total cross sections of Rayleigh scattering, comparing the 
RF approximation with SM, are shown in Figs. 3 and 4 
for carbon and lead. 

Figs. 3 and 4 also represent the quantitative error for 
the differential cross sections at 0 = 0 ° (either there is 
little angle dependence in the difference of predictions or 
forward angles dominate the integrated cross section). 
Differential cross sections at 0 -- 90 ° for carbon and lead 
are shown in Figs. 5 and 6. Further quantitative 
comparisons are made in Fig. 7, which depicts the 
relative differences of differential cross sections between 
the RF and the SM calculations at three different angles, 
0 = 0, 30 and 90 °, for lead at higher energies. (There is 
little angle dependence in the difference curves at all 
energies for carbon, for lower energies for lead.) It can be 
seen that, for all elements, RF approximation gives, in 
general, good predictions in the forward direction for 
photon energies well above the K-shell photoeffect 
threshold but produces extremely poor results for photon 
energies close to and below the K-shell photoeffect 
threshold. As momentum-transfer becomes large (i.e. for 
high photon energies at large angles), RF also fails to 
predict the correct SM cross sections. 

In general, we find that: 
(i) The angle-integrated total cross section obtained in 

RF is good (errors less than about 10%) for photon 
energies above the K-shell photoeffect threshold, for all 
elements. 

(it) Above the K-shell photoeffect threshold, RF 
predictions for the differential cross section of Rayleigh 
scattering are very good (errors less than a few percent) 
in the forward direction for almost all elements. The error 
in the forward direction in the high-energy limit is larger 
for heavy atoms than for light atoms. 

(iii) The differential cross section obtained in RF is 
good (errors less than about 10%) for all angles in light 

10 3 . . . . .  
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Fig. 7. Absolute difference in various approximations in comparison 
with the differential scattering cross sections in SM for lead at higher 
energies. At lower energies for lead, and at all energies for carbon, 
the relative difference curves show little angle dependence. 
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and medium elements and for small angles in heavy 
elements over a range of photon energies from somewhat 
above the K-shell photoeffect threshold to about ten 
times greater than this. 

(iv) For photon energies near and below the K-shell 
photoeffect threshold, RF fails for both differential and 
total cross sections. 

(v) For finite angles at very high photon energy, the 
differential cross section obtained in the RF approxima- 
tion fails, especially for heavy atoms. 

While our comparison was made explicitly with RF, 
we expect that these overall conclusions will be generally 
valid for all form-factor (FF) approximations, including 
NF (form factors computed using nonrelativistic wave- 
functions). 

In FF approximation, the bound electrons are treated 
as a continuous distribution of static free-electron charge 
fixed in space, with Thomson scattering from each 
element of charge as though associated with a single- 
electron mass. The phase differences in scattering from 
the differing positions of the charge are represented by 
the form factor, which is the Fourier transformation of 
the spatial charge density. When photon energies are well 
above the K-shell photoeffect threshold, the scattering 
occurs as off free electrons, and the FF approximation is 
better justified. FF works well at forward and small 
angles at high energies. But for photon energies 
comparable to the atomic binding energies, effects 
related to atomic structure, such as virtual excitation 
and ionization of atomic electrons, now play a more 
important role in the scattering process, creating rich 
structures in the cross section, especially for photon 
energies close to the edges. The FF approximation, 
which neglects such effects, fails to predict any of these 
structures. In particular, one sees that, near edges, FF 
performs much poorer than for other energies, owing to 
the dominance of contributions from virtual ionizations 
and excitations of electrons in those subshells. 

For photon energies below the K-shell photoeffect 
threshold, the relative difference curves are almost 
independent of angle. This fact implies that the simple 
angular distribution given by (15), which basically 
corresponds to the assumption A/" "" 0 in (5) and (8), is 
a reasonably good approximation in this photon-energy 
region, except very near edges (Parker & Pratt, 1984). 
However, as photon energy goes above the K-shell 
photoeffect threshold, the relative difference curves for 
different angles start to diverge from each other, while 
the curve for 0 = 0 remains close to 0. This indicates that 
the simple expression for the angular distribution is 
breaking down for large-momentum-transfer situations. 

The relative error in FF at forward angle drops 
significantly above K-shell photoeffect thresholds with 
increasing Z, considered relative to K-shell binding 
energies, while for specified photon energy the reverse is 
true. For example, the error at twice the K-shell binding 
energy of lead ("-88 keV) is about 10%, whereas, for 

carbon, only after about five times its K-binding energy 
(,--280 eV) does the error become less than 10%. 

The FF approximation gives generally good predic- 
tions for the total cross sections for photon energies 
above the K-shell threshold. For these energies, the 
Rayleigh amplitude rapidly decreases with increasing 
momentum transfer, as does the FF value. Consequently, 
the main contribution to the total cross section comes 
from near-forward scattering angles, where the FF 
approximation works well. Only a small contribution is 
made to the total cross section at finite angles, where the 
differential scattering cross section is not well predicted 
by the FF approximation. 

4. Modified-form-factor approximation 

An improvement to the form factor, known as the 
modified relativistic form factor, introduced first by 
Franz (1936), takes into account corrections due to 
electron binding. In the modifed form-factor (MF) 
approximation, E n -V(r)  is retained and only the 
c (K.p)  term is dropped in (12). Hence, the Rayleigh 
scattering amplitude in MF approximation (assuming 
spherically symmetric charge densities Pn) is 

AMF __ --ro(~.i . q)g(q) (16) 

or, in terms of linear photon polarization 

A~l F=--rog(q)cosO, AMF=--rog(q). (17) 

For Rayleigh scattering of an unpolarized photon, the 
differential cross section in MF approximation is 

drrMF/da"d=(r2/2)lg(q)12(1 + COS20), (18) 

where 0 is the scattering angle (0 = 20,  where 69 is the 
Bragg angle). The total-atom modified form factor is 
given as 

io °~ p.(r)(sinqr/qr) { mc2-- ~r2dr. 4st ~-'~ [E. - V(r)]J 
n 

(19) 

Unlike FF, owing to the presence of E n, MF cannot be 
calculated directly from the total electron charge 
distribution; instead, contributions from electrons of each 
subshell must be calculated and summed. A complete 
tabulation of MF values was given by Schaupp, 
Schumacher, Smend & Rullhusen (1983), in which 
g(q) for all elements in the Periodic Table were 
calculated using relativistic wavefunctions and potentials 
(total-atom and K-shell MF values are listed). 

g(q) = Z g~(q) 
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Comparisons of the MF approximation with the SM 
calculation are shown in Figs. 3 and 4 for the total 
(angle-integrated) cross section. Figs. 3 and 4 also 
represent the differences in the forward-angle differential 
cross sections as was discussed in the previous section. 
Further comparisons for the differential cross sections are 
shown in Figs. 5-7. We see that: 

(i) Above the K-shell photoeffect threshold, MF 
predicts the differential cross section of Rayleigh 
scattering extremely well in the forward direction, 
apparently converging to the correct high-energy limit 
at infinite photon energy. 

(ii) For photon energies near and below the K-shell 
photoeffect threshold, MF fails for both differential and 
total cross sections. 

(iii) Above the K-shell photoeffect threshold, the 
errors in differential-cross-section predictions of MF for 
finite angles are about the same as those of FF. 

(iv) MF works very well for the total cross section for 
photon energies above the K-shell photoeffect threshold; 
the improvement over FF reflects the improved forward- 
angle behavior. 

The deviation of the MF approximation from the S- 
matrix calculation generally behaves similarly to that of 
the FF approximation, as discussed above. But one can 
see, from Figs. 3, 4 and 7, that the main improvement of 
the MF approximation is achieved for 0 -- 0 and higher 
photon energies: MF reduces the relative error at forward 
angles from a few percent, as in the FF approximation, to 
a few tenths of a percent or less, as photon energy goes 
well above the K-shell photoeffect threshold. Although 
there is no formal proof, evidence such as this suggests 
that the relativistic MF gives essentially the correct high- 
energy limit of Rayleigh scattering in the forward 
direction. 

5. Anomalous scattering factors 

While the SM method is, in many cases, accurate in 
predicting Rayleigh scattering for X-ray and higher 
photon energies, it is often too expensive in terms of 
computer time for extensive systematic tabulation. On 
the other hand, the FF or MF approximations, though 
very simple and easy to compute, only work in limited 
situations and totally fail near and below the K-shell 
photoeffect threshold. A simple but more accurate 
method is needed. The use of anomalous scattering 
factors appears to provide such a method and we devote 
this section to a discussion of this approach. 

(a) Basic relations 

An important approach to the calculation of the 
amplitude A(w, O) for elastic scattering, not requiring 
the assumption of IPA but in practice restricted to the 
case of forward scattering, utilizes the analytic nature of 
the forward scattering amplitude that follows from 

causality, leading to the dispersion relations 

oo 

ReA(w, 0) = ( 2 t o 2 / ~ ) f [ I m  A(w', O)/w'(to '2 - -  to2)]dw ', 
0 

(2o) 

oo 

ImA(to, 0) = (-2w/zr) f [ R e  A(oY, O)/(w '2 - to2)]dto ', 
0 

(21) 

so that 

oo 

Rea(oo,  0) = (-2/zr)  f [ I m  A(oY, O)/oY]doY, 
0 (22) 

Ima(oo,  0) = 0. 

On the basis of our partitioning in §2 of the many- 
particle scattering problem in Rayleigh and Delbrtick 
amplitudes, we can write down dispersion relations 
separately for these two scattering amplitudes. In 
nonrelativistic dipole approximation, Re Ae(oo, 0 ) =  
- N r  o, with N the number of bound electrons. This is 
precisely the Thomas-Reiche-Kuhn sum rule (Thomas, 
1925; Kuhn, 1925; Reiche & Thomas, 1925), where for 
Im A e we insert (4). (Note that the single-particle form of 
this sum rule requires the partition we have made 
between A e and A°.) There are, however, small 
relativistic corrections to ReAR(w, 0), now understood 
as the amplitude for scattering off the bound electrons 
partitioned from the amplitude for Delbrtick scattering. 

Another form of the dispersion relation may be written 
in terms of the real and imaginary parts g' and g" of the 
anomalous amplitude with reference to the relativistic 
high-energy limit. These real quantities are defined by 

ae(w, O) - al¢(oo, O) = --ro(g' + ig"), (23) 

These anomalous scattering factors are closely related to 
the anomalous scattering factorsf '  andf"  conventionally 
defined in reference to the nonrelativistic high-energy 
limit, - N r  o, as 

g' =f '+  {N +[ReaR(oo, O)/ro]}, g"=f". (24) 

The sign of our f "  differs from that commonly given in 
the crystallographic literature, f~'L or f2 Henke (see, for 
example, Cromer, 1983; Creagh & McAuley, 1992; 
Henke et al., 1993) as 

fC'L =f2 Henke = --f". (25) 

AS noted in the Introduction, this difference has its 
origins in a sign choice for the plane wave. This issue has 
been discussed by Ramaseshan, Ramesh & Ranganath 
(1975), who pointed out problems of comparing neutron 
and X-ray scattering where differing phase conventions 
are used. 



280 ELASTIC SCATI'ERING CALCULATIONS 

The anomalous scattering factors satisfy 

o~ 
g'(w) = (2/zr) f[oYg"(oY)/(w '2 - w2)]dw '. (26) 

0 

In the nonrelativistic case, g' reduces to the correspond- 
ing f ' ;  the difference between g' and f '  leads to a small 
constant correction to f '  at all energies from nonrelati- 
vistic predictions. One now utilizes the optical theorem 
(see, for example, Nussenzveig, 1972) 

Im AR(w, O) = --rog"(w ) = --rof"(w) = (o9/4~c)cr TOT, 

(27) 

which follows from the unitarity of the S matrix, relating 
the total cross section for photon-atom scattering (elastic 
and inelastic, including absorption) to the imaginary 
forward elastic scattering amplitude. To lowest order in 
e 2, the total photoabsorption cross section for bound 
electrons is obtained from (4), where the bound-bound 
contributions are computed as 

crBBT+(w)=(2rr2cro/W) ~ W,,mf~m3(W--W,,m) (28) 
/l,m>/i 

and 

crBBT-(w) = (2rr2cro/W) Y~ Wnmf~mt(W--Wnm ), (29) 
n , m < n  

where fnm is the oscillator strength for the transition of 
energy hWnm of an electron from occupied state n to 
unoccupied state m. [The notation m > n/m < n indi- 
cates the sum over unoccupied states m with energies less 
than or greater than the occupied state n. For ground-state 
atoms, the contribution from (29) is zero.] Although the 
total cross section at X-ray energies is dominated by 
absorption, primarily the atomic photoelectric effect, 
contributions from bound-bound transitions (see, for 
example, Wang & Pratt, 1983) must be included if 
accurate results are to be obtained from the dispersion 
relation for low-energy scattering. Subject to these 
qualifications, it should be possible to use better 
calculations of absorption (i.e. beyond IPA) or experi- 
mental data, and thereby obtain better predictions for 
forward elastic scattering. 

From (5), the Rayleigh scattering amplitude AR(w, 0) 
in the forward direction can be expressed as 

AR(w, 0) = (~i" ~;)./~'1(o.), 0) ,  ( 3 0 )  

which can be written in terms of the anomalous scattering 
factors as 

M ( w , O ) = - r o [ f ( O ) + f ' ( w ) + i f " ( w ) ]  (31) 

or  

A4(w, 0) = -r0[g(0 ) + g'(w) + ig"(w)]. (32) 

The real quanti t iesf ' , f"  and g', g" are called anomalous 
scattering factors. They give the deviation of the 

forward-scattering amplitude from the form factor and 
from the modified form factor, respectively. 

Even though o "BPA is zero until the photon energy 
reaches nearly 2mc 2 and does not affect the energy 
dependence of the anomalous scattering factors at lower 
energies (determining an overall constant), the subtrac- 
tion is required in order to have the integrals of (20), (22) 
and (26) converge at high energies, as was first noted by 
G. E. Brown (see Payne & Levinger, 1956). However, 
our interpretation of the cross section to be subtracted 
differs somewhat from that of Brown. In our partition of 
the total elastic scattering amplitude, focusing on 
evaluation of the diagrams in Fig. 1, our Rayleigh 
scattering amplitude requires the subtraction of the 
bound-electron pair-annihilation cross section, related 
to, but not the same as, the bound-electron pair- 
production (BPP) cross section noted by Brown. In our 
partition of the optical theorem, the BPP cross section is 
identified with the Delbrtick amplitude. 

With (26) and (27), we can use experimental or 
theoretical information regarding photoionization, photo- 
excitation/photode-excitation and bound-electron pair 
annihilation to obtain the Rayleigh scattering amplitude 
in the forward direction. As a consequence, the ASF 
formalism provides us with an approach for going 
beyond IPA (Zhou et al., 1992b). Zhou, Kissel & Pratt 
(1992a) have also used these expressions to investigate 
the connection between Cooper minima and shape 
resonances in the photoionization cross section and 
structures in the anomalous scattering factors. Zhou, 
Kissel & Pratt (1992c) also used these expressions to 
devise simple computational schemes for evaluating 
anomalous scattering factors from ions using neutral- 
atom photoeffect data. 

A tabulation of f ' ,  f "  for all elements at five 
characteristic X-ray energy lines between 5 and 22 keV 
was presented by Cromer & Liberman (1970a,b, 1976, 
1981). In addition, these authors (Cromer & Liberman, 
1970a; Cromer, 1983) provided a program, FPRIME, 
that computes the anomalous scattering factors for all 
elements Z = 3-98 for photon energies 1-70 keV. Henke 
et al. (1981, 1982, 1993) have made systematic 
tabulations of anomalous scattering factors for all 
elements Z - - 1 - 9 2  for photon energies 0.05-30keV. 
[Note that Henke and co-workers tabulated in terms off~, 

f2, where fl(w) = -Re.A4(og, O)/r o = N +f'(og) and 
f2(w) =f" (~) . ]  No published tabulations of g', g" now 
exist. However, with (24) and (25), g' and g" may be 
obtained from f '  and f" ,  as discussed in the next 
subsection. Within our atomic model (the relativistic 
Hartree--Fock-Slater potential with the Latter tail), we 
have tabulated g', g" and f ' ,  f "  values for Z = 1-99, for 
photon energies 0-10000 keV, at a variable energy grid 
designed to ensure two-point linear interpolation of 
intermediate values at an accuracy of 0.1% or better. 
These data as ASCII text occupy about 25 Mbytes of disk 
space, which can be reduced to less than 20 kbytes per 
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atom if the table interpolation accuracy is specified as 1% 
and restricted to energies of 1-100 keV; fixed-grid tables 
can be made much smaller. We have developed a 
program called ASF that reads these tables and computes 
the anomalous scattering factors (g', g"), ( f ' ,  f " )  or 
(fl,  f2) at a specified energy, or writes a table to a disk 
file for a specified energy range. (Contact LK for more 
information regarding these data or software.) 

(b) High-energy limit 

In the widely used tabulations of anomalous scattering 
factors given by Cromer & Liberman (1970a,b, 1976, 
1981), Cromer (1974, 1983) and Henke et al. (1981, 
1982), the relativistic high-energy limit f '(oo), obtained 
using the electric dipole approximation, was taken as 

f~L(OO) = 35- ETOT/mC 2, (33) 

where ETO T (a negative quantity) is the difference 
between the total energy of the atom and that of its free 
constituents. However, it has been shown that higher- 
multipole terms give comparable contributions to f '  and 
cannot be neglected (Jensen, 1979, 1980). With the 
inclusion of effects up to electric quadrupole and 
retardation effects, it has been shown that a more nearly 
correct value off ' (oo) is ETOT/mC 2 (Levinger, Rustgi & 
Okamoto, 1957; Smith, 1987). 

Our numerical SM calculations have shown that the 
high-energy limit is given to a very high degree of 
accuracy by 

f '(oo) ~' g(0) - U. (34) 

Therefore, in using the real anomalous scattering factors 
of Cromer & Liberman (1970a,b, 1976, 1981) and 
Cromer (1974, 1983), f~e(W), and Henke et al. (1981, 
1982), f~ (w), one has to make an adjustment to the high- 
energy limit, using 

f ' (m) = f~i.(w) + 8f' =fl(w) - U + 8f', (35) 

where 

6 f ' =  f ' ( o o ) -  f~e(C~) z [g (0) -  N ] -  ~EvoT/mc 2. 

(36) 

These constant correction values have been tabulated for 
all neutral atoms by Kissel & Pratt (1990). The correction 
is less significant for lighter elements but is increasingly 
important for heavier elements. In fact, some discrepan- 
cies between older theory and experiments have been 
explained by this correction (Deutsch & Hart, 1988; 
Smith, 1987; Kissel & Pratt, 1990; Roy, Pratt & Kissel, 
1993). 

Please note, however, that the recent tabulation of 
Henke et al. (1993) has already included the high- 
energy-limit correction of Kissel & Pratt (1990); the 
correction of (36) should not be applied. In addition, 
Henke et al. have published a simple and accurate fit to 

the high-energy-limit corrections of Kissel & Pratt, 

g(0) _~ Z - ( Z / 8 2 . 5 )  z'37. (37) 

We have verified that this simple expression reproduces 
our high-energy-limit values with an accuracy of 0.01% 
or better for the entire Periodic Table. 

(c) Angle-independent ASF approximation 

Upon obtaining the anomalous scattering factors g', g" 
or f ' ,  f "  and thereby the forward-angle scattering 
amplitude, one can easily calculate the forward-angle 
Rayleigh scattering cross section. Equations (31) and 
(32) are exact if exact data for cr T°T are available. 

It is to be understood that the dispersion relation and 
the optical theorem, which are used to calculate 
anomalous scattering factors, are only valid for forward 
scattering. The validity of the use of forward-angle 
anomalous scattering factors at finite angles, as experi- 
ment and our S-matrix calculations have suggested, must 
be investigated. We mentioned earlier that relative error 
curves, comparing RF or MF with the S-matrix 
calculation, rarely show any dependence on the scatter- 
ing angle for photon energy below the K-shell photo- 
effect threshold. This says that, in such energy regions, 
JV" "~ 0 in (8) or (5) is a good approximation and we may 
express the Rayleigh scattering amplitude at finite angle 
0 in terms of .M, 

A R ~_ (v. i • v.~).M(og, 0), (38) 

and define anomalous scattering factors at a finite angle 
as the difference between the reduced Rayleigh scattering 
amplitude .M(w, 0) and the form factor or modified form 
factor, 

A/[(og, 0) = - r o [ f ( q ) + f ' ( w , O ) + i f " ( o g ,  O)] (39) 

o r  

~/l(w, O) = -ro[g(q ) + g'(w, O) + ig"(og, 0)]. (40) 

Numerical calculations have shown that the finite- 
angle anomalous scattering factors defined above are 
insensitive to the scattering angle 0 for photon energies 
below the K-shell threshold. So we may assume that the 
finite-angle anomalous scattering factors are angle- 
independent, that is, 

f'(oJ, O)=f'(o~), f"(oJ, O)=f" (w) ,  (41) 

o r  

g'(w, O) = g'(w), g "(w, O) = g"(w). (42) 

Although our numerical calculations show that the 
anomalous scattering factors exhibit angle dependence, 
especially for high momentum transfer for high Z, we 
utilize the approximation of angle-independent anoma- 
lous scattering factors for all energies. We have not yet 
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discovered a simple expression for modeling the angle 
dependence of anomalous scattering factors that is a 
significant improvement for all Z, energies and angles. 
We are currently exploring use of analytic Coulomb 
K-shell predictions as a means of providing improved 
angular distributions. 

Equations (39) and (40) are not equivalent at finite 
angles, unlike the situation for forward-angle scattering, 
where the g', g" and f ' ,  f "  predictions give identical 
results if the same photoabsorption data are used. The 
angle-independent g', g" form is a better choice for high- 
energy large-angle scattering (i.e. high momentum 
transfer) for high Z because the finite high-energy limit 
of f ' ,  although small compared to the forward-angle 
value of f(0), dominates the real part of the scattering 
amplitude at large angles giving very poor predictions. 

(d) MF + ASF approximation 

The Rayleigh scattering amplitude in the modified- 
form-factor with angle-independent anomalous-scat- 
tering-factor (MF+ASF) approximation is 

AMF+ASF(to, 0)  = --ro(F. i • I;7)[g(q) + g'(tO) + ig"(Og)] 

(43) 

or, in terms of linear photon polarization, 

Al~ IF+AsF = A MF+ASF c o s 0 ,  
(44) 

A MF+AsF = -ro[g(q ) + g'(og) + ig"(o))]. 

For unpolarized scattering, the differential cross section 
in this approximation can be written as 

d o  "MF+ASF/d~2 = (r~/2)lg(q) + g'(og) 
(45) 

+ ig"(o9)12(1 + cos 2 0). 

To ensure the same threshold and transition-energy 
positions and permit a consistent comparison of simpler 
approximations and S-matrix predictions, we have cal- 
culated modified form factors g(q), anomalous scattering 
factors g' g" and S-matrix predictions all within the same 
relativistic Hartree-Fock-Slater potential, with the Latter 
tail. In our evaluation of the ASF, we accurately 
tabulated photoeffect cross sections for each subshell of 
the atom for photon energies from threshold to 300 keV 
(50keV for Z = 1, 100keV for Z = 2-8) using a code 
written by Scofield (see, for example, Saloman, Hubbell 
& Scofield, 1988) and combined these subshell cross 
sections to obtain the total-atom cross section. For higher 
photon energies, these total-atom photoeffect cross 
sections were smoothly joined to values from Lawrence 
Livermore National Laboratory's Evaluated Photon Data 
Library (Cullen, Chen, Hubbell, Perkins, Plechaty, 
Rathkopf & Scofield, 1989) resulting in tabulated total- 
atom photoeffect cross sections for energies from 
threshold to 108keV. We directly evaluated bound- 
bound oscillator strengths (see, for example, Scofield, 

1975) for the most significant bound-bound contribu- 
tions to g' (over 500 transitions were included for carbon; 
over 1500 transitions were computed for lead). In our 
evaluation (26), we continued the integration above the 
pair-production threshold 2mc 2 to an energy of 100 MeV. 
(Our anomalous scattering factors at about 1 MeV were 
insensitive to cutoffs above about 15 MeV.) The total- 
atom cross sections above 2mc 2 were obtained using the 
expression 

O TOT = [(O~K E -- oKBPA)/o~KE]O PE, (46) 

where or  PE and trx al'A are the K-shell cross sections 
obtained from analytic semirelativistic expressions due to 
Costescu, Bergstrom, Dinu & Pratt (1994). This expres- 
sion is based on our assumption that the ratio of the total 
photoabsorption cross section (i.e. tr P E -  Or BPA) tO the 
photoeffect cross section for the K shell accurately 
represents the ratio for the total atom above 2mc 2. A 
small sample of S-matrix calculations for energies of 
1-5 MeV indicates that this is a reasonable assumption. 
(That is, we have made essentially no approximation in 
the evaluation of the photoeffect cross section at all 
energies 0-100MeV. However, we have made an 
estimate of the bound pair-annihilation cross section. 
Errors in our estimate of trr al'A will have no effect on the 
shape of our anomalous scattering factors well below 
the pair production threshold of 2mc2; errors in our 
estimate of trx m'A can result in at most an overall small 
constant error in g' at lower energies). 

Fig. 5 illustrates the differential Rayleigh scattering 
cross sections at 0 = 90 °. The MF + ASF approximation 
(which includes bound pair annihilation and bound- 
bound transitions), (11) with A R predicted using (44), has 
successfully reproduced the cross section of the SM 
calculation, including structures below the K-shell 
photoeffect threshold where the RF and MF approxima- 
tions fail. Overall agreement is found between the 
MF + ASF approximation and the SM method for all 
photon energies. Quantitative comparisons between cross 
sections at three scattering angles 0 = 0, 30 and 90 °, 
calculated in the MF + ASF approximation for carbon 
and lead, with cross sections obtained with the S-matrix 
method, have been prepared. For all elements, the 
M F + A S F  approximation agrees with the S-matrix 
calculation very well in most photon energy ranges and 
all scattering angles, except for very high photon 
energies and large scattering angles as shown in Fig. 7. 
From Fig. 5, we see that the cross section changes its 
value most significantly near subshell thresholds. If the 
MF + ASF approximation and the SM calculation are not 
performed in the same potential, greater differences will 
result, especially for photon energies close to edges, 
owing to the different edge positions used in the two 
calculations. 

When the photon energy increases, the differential 
cross section can no longer be described using the simple 
formula of (40) for large momentum transfers and the 
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cross sections obtained from the M F +  ASF approxi- 
mation for finite angles depart more and more from the 
S-matrix calculation, as seen in Fig. 6 for lead at 0 -- 90 °. 
For heavy elements, the M F + A S F  approximation 
begins to fail for photon energies near the K-shell 
photoeffect threshold, except in the forward direction. 
Whether there exists a simple formula for finite-angle 
Rayleigh scattering well above the K-shell threshold 
where anomalous factors are not angle-independent and 
the .N" amplitude cannot be neglected, is still unsettled. 

(e) Effects of  bound-bound transitions in ASF 

In calculations of the anomalous scattering factors, 
such as those in the ground-state neutral-atom tabulations 
of Cromer & Liberman (1970a,b, 1976, 1981), Cromer 
(1974, 1983) and Henke et al. (1981, 1982, 1993), the 
contribution from bound-bound transitions, the sum term 
in (28), has generally been thought of as small compared 
to the contribution from bound-free transitions, except 
very near edges, and has therefore been ignored. It was 
shown some time ago that, for atoms or ions with less 
than ten remaining bound electrons, the contribution 
from bound-bound transitions, especially from the 
ls ~ 2p transition, is significant and these transitions 
should be included in the real anomalous scattering 
factor, g' o r f '  (Wang & Pratt, 1983). 

To illustrate the significance of the inclusion of 
bound-bound contributions in the anomalous scattering 
factors, we can examine the comparisons with the 
MF+ASF-BB approximation (MF+ASF neglecting 
bound-bound transitions) shown in Figs. 3-7. We see 
that neglect of bound-bound contributions results in a 
remarkable increase in the relative error for low photon 
energies for carbon. (A similar large increase in the low- 
energy error of MF+ASF-BB versus SM would also be 
expected for lead but will occur at still lower energies, 
not shown in these comparisons.) 

Inclusion of bound-bound contributions, not only the 
ls ~ 2p transition but also smaller ones, is essential to 
obtain good agreement with the SM results at low photon 
energies and near to thresholds. To give a direct 
illustration, the differential cross section of carbon at 
0 = 90 ° near the K-shell threshold is shown in Fig. 5. 
The inclusion of bound-bound contributions makes the 
MF+ASF cross section converge to the SM predictions. 
We have also shown that, in the ion cases (Zhou et al., 
1990), the inclusion of contributions from the ls ~ 2p 
transition markedly improves the agreement of both g' 
and the cross section with the SM results for Ne ions. For 
heavy atoms with more than ten bound electrons, such as 
Xe or Pb, the inclusion of the bound-bound contribution 
is much less important for not-too-low and not-too-close- 
to-threshold photon energies. So, it is increasingly less 
important to include bound-bound contributions in 
MF+ASF for atoms or ions as the number of bound 
electrons increases above ten, for most photon energies. 

The inclusion of bound-bound transitions is also 
important for satisfying the relativistic Thomas-Reiche- 
Kuhn (TRK: Thomas, 1925; Kuhn, 1925; Reiche & 
Thomas, 1925) sum rule, which is, to lowest order in e 2, 

OO 

N ~-- (1/2rr2Cro) f [o 'PE(o.)  t )  - -  o'BPA(c.O')]d(.o ' 
0 

+ ~ f,,, - f ' ( o o ) .  (47) 
t l ,m  

The effect of neglecting bound-bound transitions is 
especially significant for low photon energies, not only 
for atoms with less than 10 bound electrons but also for 
other atoms in general because the contribution to g' or 
f '  at low energy associated with a bound-bound 
transition n --* m is nearly constant. 

elim {f,~/[1-(E/E.m)2]} =f,,.,, (48) 
<<Lnm 

withf, m the oscillator strength of the transition. In Fig. 8, 
we show the total contribution of bound-bound transi- 
tions to the TRK sum rule, (47), for all neutral ground- 
state atoms. Bound-bound transitions contribute 30% or 
more to the sum rule for atoms Z = 1, 3-5, 20, 21 and 
56-58. 

Fig. 8 exhibits a regular structure with local minima 
corresponding to closed-shell or nearly closed-shell 
atoms (2He, l°Ne, 18Ar, 36Kr, 46pd, S4Xe, 79Au and 
86Rn). A sharp rise in the total oscillator strength is 
observed for the elements immediately following the 
atoms with close-shell configurations; in lighter atoms, 
the extra electrons are generally added to the s state of a 
new shell, opening channels for strong s-p dipole 
transitions, and, in heavier atoms, the extra electrons 
enhance p--d and d - f  transitions of existing incompletely 
filled shells. As additional electrons are added, the total 
oscillator strength decreases as the extra electrons fill the 
formerly open upper state of the transitions; eventually, 
the shell is closed and a new minimum in oscillator 
strength is reached. 
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Fig.  8. C o n t r i b u t i o n  o f  b o u n d - b o u n d  t rans i t ions  to the  T R K  s u m  rule.  
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(f) Sample comparisons with experiment 

To give an idea of the improvements from form-factor 
predictions achieved by including anomalous-scattering 
corrections, we present the case of 0 -- 90 ° scattering of 
59.54 keV photons in Fig. 9. Here we compare predic- 
tions in MF and MF-t-ASF approximations with 
measurements by various authors that span most of the 
Periodic Table. We can see significant differences 
between MF and MF-t-ASF predictions, especially for 
atomic numbers around Z = 70 where the photon energy 
crosses the K-shell photoeffect threshold. 

5.0 • I I I I 1 I 1 1 

4.5 - 59.54 keY / 
0 = 90 ° / /  

4.0 /",/ 
0 

3.5 
~ 3.0 , c) 

~,~ 2.5 

"6 2.O 'o 
1.5 MF, 

1.05 S MF+ASI 

O0 10 20 30 40 50 60 70 80 90 O0 

Atomic Number, Z 

Fig. 9. Comparison of our MF (broken line) and MF+ASF (solid line) 
predictions for the differential cross section at O = 90 ° for 59.54 keV 
photons with experiment (~7 Schumacher & Stoffregen, 1977; 
[] Eichler & de Barros, 1985; A Smend & Czerwinski, 1986; 
O Govinda Nayak, Siddappa, Balakrishna & Lingappa, 1992). i 

,oo . Xe,z; 4, 
lOt <:.c. z L ~ 10 

. 1 0  1 

' ~  1 0  1 

O.11 1 

20 24 28 32 36 40 44 

Photon Energy (keY) 

Fig. 10. Comparison of our MF (broken lines) and MF-t-ASF (solid lines) 
predictions for the linearly polarized differential cross section, near 
the K-shell photoeffect threshold of xenon, with the experiment of 
Smend et  al. (1987). 

As a second example, we show in Fig. 10 comparisons 
with a polarized scattering experiment that involve 
photon energies near the xenon K-shell photoeffect 
threshold (at about 34.5 keV). In this example, the cross 
section is shown for scattering of photons with linear 
polarization perpendicular to the scattering plane, 
dtr±/dI2, at three angles 0 = 60, 90 and 120 °. We 
observe that agreement is generally quite good between 
the measurements of Smend et al. (1987) and the 
MF+ASF predictions. 

As a more stringent test, we show in Figs. 11-15 a 
comparison of our predictions of f '  and the recent 
experiments of Stanglmeier, Lengeler, Weber, Grbel & 
Schuster (1992). We observe generally good agreement 
between theory and experiment for photon energies not 
too near to thresholds for the K-shell thresholds of lighter 
atoms. Less satisfactory agreement is seen for the L-shell 
thresholds of the heavy atoms. For tantalum and gold, the 
agreement is generally good for higher energies, poorer 
for lower energies; the sign of the low-energy discre- 
pancy is different in the two cases. The agreement for 
platinum is systematically poor, with the greatest 
disagreement for the lower energies. 
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Fig. 11. Comparison of our f '  predictions with the measurements of 
Stanglmeier et al. (1992) for nickel. 
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Fig. 12. Same as Fig. 11, for copper. 
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(g) Concluding remarks on the validity of the MFff-ASF 
approximation 

From Figs. 3-7, we conclude that: 
(i) For all photon energies below the K-shell 

photoeffect threshold, the differential cross section of 
Rayleigh scattering predicted by the MF+ASF method 
works very well (errors less than about 5%). 
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Fig. 13. Same  as Fig. 11, for tantalum. 
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Fig. 15. Same  as Fig. 11, for  gold. 

(ii) Above the K-shell threshold, the differential cross 
section obtained in the MF+ASF approximation is very 
good for all angles in low-Z elements and for small-angle 
scattering in high-Z elements. 

(iii) The predicted differential cross section in 
MF+ASF approximation fails at large angles for photon 
energies well above the K-shell photoeffect threshold. 

(iv) For low-Z atoms with less than ten bound 
electrons, the inclusion of the contributions from 
bound-bound transitions to g' is crucial for low photon 
energies, while for intermediate and heavy elements it is 
less important in the X-ray regime. (Bound-bound 
transitions remain important at low energies for all Z.) 

(v) For all photon energies, the MF+ASF approxima- 
tion, with the bound-bound contribution properly 
included, works very well for the total angle-integrated 
cross section. 

We stress that our comparison between theories has 
been made within a single atomic model and that all 
calculations (i.e. the SM, MF and ASF calculations, 
including the atomic photoeffect and the bound-bound 
transition calculations) are. performed in the same IPA 
potential. Our aim here has been to investigate how 
accurately simpler and more approximate theories can 
duplicate features of the SM calculation for a given 
model potential. This can give insight regarding the 
utility of such approaches when experimental data, rather 
than SM data in a model, are used. Any differences in 
atomic potentials that would shift atomic thresholds 
between the SM calculation and the ASF calculation will 
result in significantly larger discrepancies for photon 
energies near to edges. 

6. Beyond the IPA model  

Our calculations have been performed for Rayleigh 
scattering from an isolated and neutral ground-state atom 
within the framework of the independent-particle 
approximation. This approach is insufficient when 
correlations among electrons become important (such 
as for very low photon energies or very close to 
thresholds) or when the atom is strongly affected by an 
environment (such as in the solid state or a plasma). 

Since Rayleigh scattering is, in fact, a many-electron 
process, incorporation of correlation effects can proceed 
by one of several existing approaches, such as many- 
body perturbation theory (Garvin, Brown, Carter & 
Kelly, 1983) or random phase approximation (Amusia, 
Ivanov & Chernysheva, 1981), although no direct 
calculation of scattering has been attempted via these 
approaches. Alternatively, in the time-dependent local- 
density approximatation method (TDLDA), which in- 
cludes electron correlations, the atomic polarizability can 
be calculated and hence the anomalous scattering factors 
can be obtained (Doolen & Liberman, 1987). Another 
approach is to directly calculate the higher-order 
S-matrix elements, such as fourth-order S-matrix elements 
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(Linet al., 1975), which can include diagrams represent- 
ing some electron-electron correlations resulting from 
direct photon exchange. 

A convenient indirect way to incorporate electron 
correlation effects in Rayleigh scattering is through (26) 
and (27), since the optical theorem and dispersion 
relations are fundamental relations of physical processes 
of much more general validity. One can calculate the 
anomalous scattering factors utilizing experimental 
photoionization cross sections (Barkyoumb & Smith, 
1990; Barkyoumb, Morrison & Smith, 1990) or use more 
sophisticated calculations beyond IPA, such as the 
relativistic random phase approximation (Zhou et al., 
1992b). There is always a problem of consistency, since 
the equations require data from all energies while 
experiment or more sophisticated theory is available for 
limited ranges. Sum rules such as (47) provide important 
tests. 

In Figs. 16 and 17, we focus on a near-threshold 
comparison for the K shell of nickel. Our independent- 
particle-approximation (IPA) relativistic self-consistent 
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Fig. 16. Detailed comparison of f "  predictions close to the K-shell 
photoeffect threshold for nickel: our unmodified IPA predictions 
(solid line); experimental values of Stanglmeier et al. (1992) (O);  
IPA predictions incorporating near-edge experimental information 
(broken line). 
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Fig. 17. Same as Fig. 16, for f ' .  

atomic model does not precisely predict the threshold 
observed in the experiment. As a consequence, our 
unmodified predictions (the solid curves in the figures) 
are observed to be displaced in energy for the 
measurements. An ad hoc modification to our predictions 
(broken curves in the figures) results from the replace- 
ment of our IPA photoabsorption data (both photoeffect 
data and bound-bound transition data) for photon 
energies of 7.3-9.25keV with values measured by 
Stanglmeier et al. (1992). The resulting IPA plus near- 
edge photoabsorption data can be used in (27) and (26) to 
obtain the broken curves in Figs. 16 and 17. We observe 
a dramatic improvement in the agreement between these 
modified predictions and experiment even though the 
spacing of the data from Table 3 of Stanglmeier et al. 
(1992) is not dense enough to fully characterize the near- 
edge structure and extended X-ray absorption fine- 
structure spectroscopy in the photoabsorption data. Our 
modified predictions also satisfy the TRK sum rule, (47), 
to a high degree of accuracy, yielding a numerical value 
of 28.001, which differs by less than 0.01% from the 
correct value of 28. 

Thus, we have demonstrated that detailed and accurate 
measurements of the near-edge photoabsorption data can 
be used to improve IPA ASF predictions. But this level 
of experimental information is not systematically avail- 
able for all elements and ions in the Periodic Table. As a 
consequence, we are also exploring other ad hoc 
modifications of our IPA predictions that use less 
detailed experimental information. In particular, we are 
currently investigating the utility of energy scaling 
procedures that depend only on the use of experimental 
binding energies, available for most subshells of most 
neutral atoms. 

7. Concluding remarks 

We have carried out a systematic assessment of the 
relativistic form-factor (RF), modified-form-factor (MF) 
and anomalous-scattering-factor (ASF) approximations, 
and their validity in comparison with the second-order S- 
matrix (SM) calculation, for some representative atoms. 
In general, RF and MF are high-photon-energy and 
small-momentum-transfer approximations. They provide 
good predictions of small-angle differential cross sec- 
tions for photon energies above the K-shell photoeffect 
threshold, while they fail at all angles for photon energies 
below the K threshold and at large angles for photon 
energies well above the K threshold for high-Z elements. 
Both RF and MF can provide good predictions for the 
angle-integrated cross section above the K threshold but 
not below. The MF value in the forward direction is very 
close to the correct high-energy limit of the forward- 
angle Rayleigh scattering amplitude. The use of MF with 
angle-independent ASF (MF+ASF) provides an accurate 
and efficient way to predict Rayleigh scattering cross 
sections for all angles for photon energies near and below 
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the K-shell  photoeffect  threshold, though the angle- 
independent  assumption for ASF fails for f'mite angles at 
photon energies well above the K threshold for high-Z 
elements. The commonly  employed high-energy limit 
ft~L(CO)---~EToT/mC 2, which was derived within the 
dipole approximation,  is inadequate and the more correct 
high-energy limit f ' ( o o ) _ ~  g ( 0 ) -  N has to be used, 
especial ly for heavy atoms. For atoms with less than ten 
electrons, the bound-bound  contribution to the real ASF  
is significant and should be included, while for heavier 
atoms the bound-bound contributions can still be 
significant for very low energies. After incorporating 
both the bound-bound  contributions and the correct 
higher-energy limit, we have shown that the Rayleigh-  
scattering cross sections predicted by M F + A S F ,  calcu- 
lated in the same potential as in the SM calculation, agree 
with the SM results within 5% for all angles and all 
atoms, for photon energies below the K-shell  photoeffect  
threshold. In comparisons of our ASF predictions with 
experiment,  we observe that independent-particle- 
approximation (IPA) isolated-atom predictions can show 
serious disageement with measurements,  especially near 
thresholds. The origin of  the disagreement is not the ASF 
procedure itself but the validity of the photoabsorption 
data used in the procedure. Marked improvements  in 
ASF predictions have been demonstrated through the 
incorporation of experimental  information. 
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Abstract 

The statistical theory of  dynamical  diffraction, in the case 
E = 0, for which there is no long-range order, is 
reformulated with rigorous boundary conditions. The 
presence of  a coherent forward-diffracted wave along the 
boundary of  the influence region in the spherical-wave 
approach is taken into account. The integrated reflectivity 
is calculated in the case of  Laue geometry and is found to 
be significantly different from the result of  the previous 
formulations if x2rT  > 1 (X is the reciprocal of  the 
extinction distance, r is the correlation length of  the 
lattice imperfection and T is the crystal thickness along 
the incident direction). 

I. Introduction 

Following Kato (1980), the Bragg diffracted intensity 
from a randomly distorted crystal contains a coherent 
part and an incoherent part, which are related to the 
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statistical averages and to the statistical fluctuations of  
the wave amplitudes, respectively. Further developments 
and some modifications of  the original treatment of  Kato 
(1980) have been proposed by the various authors quoted 
in the reference list of  the present paper, and its 
applicability to some experimental data has been 
discussed recently by Schneider, Bouchard,  Graf  & 
Nagasawa (1992), Takama (1993) and Takama & Harida 
(1994). 

A more general form of  the statistical theory, based on 
wave equations more rigorous than the Takagi -Taupin  
equations used below, has also been proposed by Kato 
(1991), but this new advanced development is not 
considered in the present paper. The theory based on 
the Takagi -Taupin  equations can itself be reformulated 
in a more complete form, especially by reconsidering the 
boundary conditions along the edges of  the Borrmann 
fan. This was first done for the coherent waves (Guigay 
& Chukhovskii ,  1992; see also Kato, 1994). The purpose 
of  the present paper is to continue this reformulation for 
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